OBJECTIVES

for

CHM 231-5

J. S. Korrey MAY, 1986

CHM 231-5

Unit I: METHODS

After completion of this unit, the student should be able to:

- 1. Select a suitable method for analysis based on certain criteria.
- 2. List the criteria useful in making a decision.
- 3. Define the sources of error in trace analysis, and give an explanation of each.
- 4. Distinguish between repeatability and reproducibility.
- 5. Explain what is meant by sensitivity and detection limit.
- 6. Discuss the importance of "speed" on an analysis.
- 7. List two factors of prime importance under the heading "Scale of Working".
- List the four steps into which most analytical methods can be broken down.
- Explain, why choice of containers is so important in trace analysis.
- 10. List the various methods used for cleaning glassware.
- 11. Choose the best container for the storage of various types of samples for analysis.
- 12. List the limits of impurities in reagents used for trace analysis.
- 13. State the errors that occur due to sampling.
- 14. Describe how a sample may vary in composition during storage or processing.
- 15. Define "Fluxes".
- 16. State, why fluxes are so important in analytical chemistry.
- 17. List the two categories into which fluxes are classed.

Unit II: ELECTROCHEMISTRY

After completing this section, the student should be able to:

- Draw an electrochemical cell showing half-cells, salt bridge, and external circuit.
- Balance redox equations, and show half-reactions and cell diagrams together with the direction of electron flow, anode and cathode.
- 3. Write down any cell in the shorthand notation.
- 4. Describe the function of a salt bridge.
- Show how the table of standard potentials can be developed, using the abitrary standard hydrogen half-cell.
- Use standard reduction potentials to predict the strength of oxidizing and reducing agents.
- 7. Obtain the potential of any cell from the standard reduction potentials, and explain why it is independent of the stoichiometry of the redox equation.
- 8. Use standard reduction potential data to predict the spontaneity of redox reactions.
- 9. Calculate the equilibrium constant of a cell process, given the cell potential.
- 10. Calculate the potential of a cell in which the concentrations of electrolytes differ, using the Nernst Equation. Calculate the concentrations within such a cell, given the cell potential.
- 11. Draw an electrolytic cell showing electrode processes at the anode and cathode, and the direction of charge flow.
- 12. From the redox of an electrolytic cell, and the current passed in a given time, calculate the amount of chemical reaction produced. For example, you will be able to calculate how much Cl₂ is evolved in the electrolysis of NaCl, given the current and time.
- 13. Predict the order of precedence of half-reactions in an electrolytic cell at both anode and cathode, using standard reduction potentials.
- 14. Calculate the theoretical decomposition potential of a solution, given the molar concentration of the solution.
- 15. a) Determine the amount of substance deposited on a cathode by passage of a current for a specified time.

- b) Determine the time required to deposit a certain amount of substance from solution under specified conditions.
- c) Determine the quantity of electricity required for deposition or liberation of a certain quantity of substance at an electrode.
- 16. List five variables that influence the properties of deposits, and give a brief explanation of each.
- 17. Describe the phenomenon of Polarization.
- 18. Determine the pH of a solution, so that the concentration of metal can be reduced to a low value before hydrogen evolution occurs.
- 19. Define, i.e., write out concise definitions for each of the following:
 - a) Faraday
 - b) Coulomb
 - c) ampere
 - d) equivalent weight
 - e) decomposition potential
 - f) back e.m.f.
 - g) polarization
 - h) overvoltage
 - i) IR drop (Ohmic Resistance of solution)
 - j) current density
 - k) limited cathode potential
 - 1) depolarizer
- 20. Draw fully labelled diagrams and compare
 - a) the hydrogen
 - b) calomel
 - c) silver-silver chloride
 - d) Weston cell
 - e) glass indicator electrodes with respect to:
 - i) construction
 - ii) chemical make-up
 - iii) useful pH range
 - iv) interferences, if any
 - v) general utility under all operating conditions
 - vi) usefulness in solvents other than water
- 21. Write the half-cell reactions which occur when each of the electrodes in objective No. 1 (a), (b) and (c) are coupled with the glass electrode in part (e).

- 22. Write the shorthand designation of each of the cells produced in objective No. 2.
- 23. Derive an equation relating the potential of the glass-calomel electrode system to the pH of the solution.
- 24. Describe the uses and limitations of the hydrogen electrode.
- 25. State four properties of a good reference electrode.
- 26. Give a brief explanation of how the glass electrode measures pH.
- 27. Explain, what is meant by the term "junction potential", as it applies to pH measurement with the glass electrode.
- 28. List five errors that affect pH measurements with the glass electrode. Give an explanation of each and how they may be avoided.
- 29. Define the terms:
 - a) residual current
 - b) diffusion current
 - c) limiting current
 - d) half-wave potential
 - e) current maxima
- 30. Give a brief explanation of the principle of polarography.
- Give four factors regarding the choice of a supporting electrolyte.
- State the advantages and disadvantages of the dropping mercury electrode.
- 33. Give a method by which current maxima may be eliminated.
- 34. State the effect of oxygen on polarographic waves.

Unit III: OPTICAL METHODS

After completing this unit, the student should be able to:

- Define such terms as frequency, velocity, wavelength, wave number, radiant energy, micron, Angstrom unit, and nanometer.
- 2. Explain the difference between a photometer and a spectrometer.
- Elaborate on the difference between emission and absorption spectroscopy.

- 4. List the five main regions of the electromagnetic spectrum in which the different forms of radiant energy may be grouped or classified.
- Explain, how the five forms of radiant energy interact with matter.
- Explain or define such terms as: Monochromatic light, radiant power, transmittance, absorbance, absorbtivity.
- 7. State Lambert's Law, and Beer's Law.
- 8. Solve problems based on the Beer-Lambert Laws.
- 9. Explain how spectra are produced:
 - a) by atoms
 - b) by molecules
- Convert units of wavelength in Angstroms to microns, millimicrons and centimeters.
- 11. Derive an equation for energy in terms of wave numbers, and determine the energy associated with 200 wave number units.
- 12. State the four basic components required by a piece of apparatus to perform an analysis.
- 13. List three requirements of a radiation source.
- 14. List the various devices employed for restricting radiation, and explain how each functions.
- 15. Explain, what happens to white light, when it makes contact with a diffraction grating.
- 16. Give an explanation of what happens to light beams of different wavelength and frequency, after contracting the diffraction grating.
- 17. Explain, in what way the various knobs on the colorimeter affect the light beam which is passed through the sample holder.
- 18. Explain, what is meant by the term "bandwidth".
- 19. Explain, why the effective bandwidth of 20 mu is constant over the entire wavelength region.
- 20. Give a reason why a solution appears red in colour.
- 21. Review the Beer and Lambert Laws of absorption, and make use of them in calculations.

- 22. Account for deviations from Beer's Law.
- 23. Show that $A = 2 \log %T$, starting with the Beer-Lambert relationship.

$$A = \log \frac{P}{-P} = \frac{P}{P}$$

- 24. Draw a schematic diagram of a double-beam optical system as used in U.V. molecular absorption spectroscopy.
- 25. State the advantages of the double-beam system, over the single beam system.
- 26. Name, and give brief outline of sources of U.V. and visible radiation with the usable wavelength region of each.
- 27. List the materials used in sample cells for U.V.-visible radiation, and explain why each is used for a particular region of the electromagnetic spectrum.
- 28. Name the various types of detectors used for U.V.-visible radiation, and give a brief description of each.
- 29. State four requirements for the absorption of IR radiation by molecules.
- 30. Describe the various ways in which two atoms, joined by a chemical bond, may vibrate in a molecule.
- 31. Name the two most popular sources of IR radiation, and give a brief explanation of each.
- 32. List the common types of detectors used in IR spectroscopy, and give a brief description of their make-up, and how they function.
- 33. State the factors which govern choice of solvent for use in IR spectroscopy.
- 34. Explain, how a slurry or mull, and the KBr pellet method are used to obtain IR absorption spectra on solid samples.

Unit IV: ATOMIC ABSORPTION SPECTROSCOPY

After completing this module, the student should be able to:

- 1. Explain, why atomic absorption lines are very narrow.
- a) Give reasons why a hollow cathode is used instead of a hydrogen lamp as the radiation source in A.A. spectrophotometers.
 - b) Draw a schematic diagram of a hollow cathode.
- a) Explain, why modulation is necessary for accurate results in A.A. spectroscopy.
 - b) Describe, how modulation is achieved in the Unicam SP-90 A.A. units.
- Give an explanation of why atomic absorption is not used for qualitative analysis.
- a) State the causes of chemical interference in A.A. spectroscopy.
 - b) Give three examples of substances that cause interference in Objective 5(a).
- 6. Explain the difference between sensitivity and detection limit.
- a) List the different types of burners available for use in A.A. spectroscopy.
 - b) Give a brief description of each of the burners listed in part (a).
 - c) Describe the advantages and disadvantages of each of the burners listed in part (a).
- 8. Discuss the desirability of using an organic solvent to dissolve a particular sample for A.A. analysis. Consider the effect on solubility, flammability, flow rate, fuel/oxidant ratio, etc.
- Describe the effect produced by too high, and too low source current upon absorbance readings.
- 10. Describe the effect of too high a source current, upon the lifetime of a hollow cathode lamp.
- 11. a) Describe the effect of too high, or too low a slit width setting has upon spectral bandwidth.
 - b) Explain, how the slit setting in (a) part affect the absorbance readings of the sample.

12. Explain, how you would optimize the analytical wavelength on the SP-90 A.A. unit.

Describe the effects of variations in the control settings on absorbance by the following parameters.

- Gain
- Scale expansion
- Fuel to oxidant ratio
- Burner positioning
- Aspiration rate (cc/min)
- 13. Given a set of data, calculate this concentration of metal in percent, mg/liter, micrograms/liter, moles, etc., and be able to convert one set of units to another.

Unit V: GAS CHROMATOGRAPHY

General Objectives:

The student should study the general principles of gas liquid chromatography, and learn to apply those principles to the qualitative and quantitative analysis of organic liquid mixtures.

Specific Objectives:

The student should be able to:

- 1. Define such terms as:
 - a) Stationary phase
 - b) mobile phase
 - c) migration medium
 - d) retention time
 - e) resolution
 - f) efficiency
 - g) origin
 - h) base line
 - i) dead volume
 - j) peak
 - k) chromatography
- Describe the mechanism by which solute species are separated in the chromatographic process.

- 3. List four properties of a good stationary phase.
- Select the appropriate stationary phase for any particular analytical problem.
- Describe the function of the various components that comprise a gas-liquid chromatograph.
- 6. List five precautions that should be taken in the preparation of a column.
- 7. Give the sequence of operations necessary in making an injection.
- 8. Give three precautions to be taken when handling and storing a precision syringe.
- Choose, which of the following stationary phases you would use to separate a mixture of acetone (b.p. 56°) and methanol (b.p. 65°):
 - a) Apiezon L (non-polar)
 - b) dinonyl phthalate (semi-polar)
 - c) Carbowax 20,000 (polar)
- 10. Write down the formulae for three of the following:
 - a) Number of theoretical plates
 - b) Peak Resolution
 - c) Partition Coefficient
 - d) Peak Area Ratio
 - e) Retention time
- 11. Describe briefly, what happens after a sample has been injected into the apparatus, concluding your account with the production of a visual trace.
- 12. Describe, which part of a peak gives a measure of efficiency of the column.
- 13. Write down the two main classes of detectors, and draw a sketch of the type of chromatogram produced by each.
- 14. a) Name two types of detectors most commonly used.
 - b) Explain how each type produces a signal.
- 15. Give a brief account of the way in which (a) Polarity, and (b) Hydrogen Bonding can help in a chromatographic analysis.

- 16. In a chromatographic analysis explain:
 - a) What effect would a low temperatue have on
 - efficiency
 - retention times
 - b) What would be the first choice of oven temperature
 - c) Assuming the temperature were kept constant, how would a change in the flow of carrier gas affect the separation of two components
- 17. Show how you would identify a component quiltatively by g.l.c.
- 18. Describe, which property of a peak gives a measure of the quantity of that component present in the sample.
- 19. Interpret a chromatogram, and identify the components.
- 20. List four requirements of a solid support.
- 21. State the disadvantages of using hydrogen as a carrier gas.
- 22. List the factors which affect retention time.